Süß. Fruchtig.
Einzigartig.

Frucht trifft Finesse

BIO PLANÈTE Apfelbalsam aus Italien – süß, fruchtig, einzigartig

Unser BIO PLANÈTE Apfelbalsam bringt den Duft und den Geschmack sonnengereifter italienischer Äpfel auf Ihren Teller. In einem sorgfältigen Verfahren entsteht aus konzentriertem Apfelsaft und Apfelessig ein außergewöhnlich milder Balsam mit intensiver Süße und weichem Fruchtaroma – ideal für alle, die Süße, Frucht und feine Säure lieben.

Mit seinem hohen Anteil an konzentriertem Apfelsaft und einer angenehm milden Säure ist dieser Apfelbalsam nicht nur ein echter Genuss, sondern auch eine hochwertige Alternative zu klassischen Essigen. Die kräftig rubinrote Farbe und das volle Apfelaroma machen ihn zum Star in der modernen Küche – ob in Salaten, Saucen, zu Fleisch oder sogar in Desserts und Drinks.

BIO PLANÈTE Apfelbalsam aus Italien

9,99 €*

Inhalt: 0.25 Liter (39,96 €* / 1 Liter)

So entsteht unser Apfelbalsam aus Italien

Sorgfältige Auswahl

Nur vollreife, aromatische Äpfel werden für unseren Apfelbalsam verwendet – sie bilden die fruchtige Basis und sorgen für die natürliche Süße.

Schonende Verarbeitung

Die frisch geernteten Äpfel werden zu konzentriertem Saft und Apfelessig verarbeitet. Beide Zutaten werden sorgfältig kombiniert, bis Süße und Säure harmonieren.

Ohne künstliche Zusätze

Auf Konservierungsstoffe oder Farbstoffe verzichten wir bewusst – unser Apfelbalsam bleibt so naturbelassen wie seine Zutaten.

Abfüllung mit Charakter

Die kräftig rubinrote Farbe und der intensive Apfelduft machen unseren Apfelbalsam nicht nur geschmacklich, sondern auch optisch zu einem Highlight

Besonders lange haltbar

Bei dunkler, kühler Lagerung ist der Apfelbalsam mindestens drei Jahre haltbar, denn die Essigsäure wirkt als natürliches Konservierungsmittel.

Apfelbalsam aus Italien – für kreative Genussmomente

Quellenverzeichnis

  1. 1 Kris-Etherton, P et al. (2004). Polyunsaturated fatty acids and cardiovascular health. Nutrition reviews, 62(11), 414-26. https://doi.org/10.1111/J.1753-4887.2004.TB00013.X
  2. 2 Meydani, S (1996). Effect of (n-3) polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition, 12(1 Suppl), S8-14. https://doi.org/10.1016/S0899-9007(96)80004-9
  3. 3 Fett, essenzielle Fettsäuren | DGE
  4. 4 Coniglio, S J et al. (2023). Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology, 12. https://doi.org/10.3390/biology12020279
  5. 5 Coletta, J et al. (2010). Omega-3 Fatty acids and pregnancy. Reviews in obstetrics & gynecology, 3(4), 163-71. https://pubmed.ncbi.nlm.nih.gov/21364848
  6. 6 Hashimoto, M (2014). [Omega-3 fatty acids and cognition]. Nihon rinsho. Japanese journal of clinical medicine, 72(4), 648-56. https://pubmed.ncbi.nlm.nih.gov/24796092
  7. 7 Duan, H et al. (2023). Polyunsaturated Fatty Acids (PUFAs): Sources, Digestion, Absorption, Application and Their Potential Adjunctive Effects on Visual Fatigue. Nutrients, 15. https://doi.org/10.3390/nu15112633
  8. 8 Kazemi, F et al. (2021). The Effect of Evening Primrose Oil Capsule on Hot Flashes and Night Sweats in Postmenopausal Women: A Single-Blind Randomized Controlled Trial. Journal of Menopausal Medicine, 27, 8 - 14. https://doi.org/10.6118/jmm.20033
  9. 9 Farzaneh, F et al. (2013). The effect of oral evening primrose oil on menopausal hot flashes: a randomized clinical trial. Archives of Gynecology and Obstetrics, 288, 1075-1079. https://doi.org/10.1007/s00404-013-2852-6
  10. 10 Fathizadeh, N et al. (2008). Effects of evening primrose oil and vitamin E on the severity of periodical breast pain. iranian journal of nursing and midwifery research, 13, 90-93. https://www.semanticscholar.org/paper/2e387d9796539d33c194ddaa21cecb5a9fb8cf62
  11. 11 Sharif, S, Darsareh, F (2019). Impact of evening primrose oil consumption on psychological symptoms of postmenopausal women: a randomized double-blinded placebo-controlled clinical trial. Menopause. https://doi.org/10.1097/GME.0000000000001434
  12. 12 Safdari, F et al. (2021). Effect of Evening Primrose Oil on Postmenopausal Psychological Symptoms: A Triple-Blind Randomized Clinical Trial. Journal of Menopausal Medicine, 27, 58 - 65. https://doi.org/10.6118/jmm.21010
  13. 13 Boccardo, A et al. (2022). Effects of a supplemental calcareous marine algae bolus on blood calcium concentration in dairy heifers. https://www.semanticscholar.org/paper/99d3bea01671540c65062dc448b09f62ab83032d
  14. 14 Desideri, D et al. (2016). Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health, Part A, 79, 112 - 122. https://doi.org/10.1080/15287394.2015.1113598
  15. 15 Zhu, Y et al. (2014). Solubilisation of calcium and magnesium from the marine red algae Lithothamnion calcareum. International Journal of Food Science and Technology, 49, 1600-1606. https://doi.org/10.1111/IJFS.12459
  16. 16 Silva, R P d et al. (2021). Characterisation and Traceability of Calcium Carbonate from the Seaweed Lithothamnium calcareum. Solids, 2, 192-211. https://doi.org/10.3390/SOLIDS2020013
  17. 17 Moura, A, Adicionais, P C (2008). UTILIZAÇÃO DA FARINHA DE ALGAS CALCÁREAS NA ALIMENTAÇÃO ANIMAL USE OF SEAWED FLOUR IN THE ANIMAL FEEDING. https://doi.org/10.21071/az.v58i224.5076
  18. 18 Pérez, J A M et al. (2011). Assessing osteoporosis risk factors in Spanish menopausal women. Gynecological Endocrinology, 27, 807 - 813. https://doi.org/10.3109/09513590.2010.540599
  19. 19 Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause, 28, 973 - 997. https://doi.org/10.1097/GME.0000000000001831
  20. 20 Patil, V S et al. (2022). To Study the Osteoporosis in Pre and Post Menopausal Women. International Journal of Medical and Biomedical Studies. https://doi.org/10.32553/ijmbs.v6i3.2447
  21. 21 Hejazi, J et al. (2020). Nutrition and osteoporosis prevention and treatment. Biomedical Research and Therapy, 7, 3709-3720. https://doi.org/10.15419/bmrat.v7i4.598
  22. 22 Flynn, A (2003). The role of dietary calcium in bone health. Proceedings of the Nutrition Society, 62, 851 - 858. https://doi.org/10.1079/PNS2003301
  23. 23 Pikor, D et al. (2024). Calcium Ions in the Physiology and Pathology of the Central Nervous System. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms252313133
  24. 24 Hidalgo, C, Donoso, P (2008). Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxidants & redox signaling, 10(7), 1275-312. https://doi.org/10.1089/ars.2007.1886
  25. 25 Kuo, I Y, Ehrlich, B (2015). Signaling in muscle contraction. Cold Spring Harbor perspectives in biology, 7(2), a006023. https://doi.org/10.1101/cshperspect.a006023
  26. 26 Parasa, M et al. (2014). Cramps and tingling: A diagnostic conundrum. Anesthesia, Essays and Researches, 8, 247 - 249. https://doi.org/10.4103/0259-1162.134524
  27. 27 Gutzeit, D et al. (2008). Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: a kinetic study on storage stability and the determination of processing effects. Journal of food science, 73(9), C615-20. https://doi.org/10.1111/j.1750-3841.2008.00957.x
  28. 28 Koskovac, M et al. (2017). Sea Buckthorn Oil—A Valuable Source for Cosmeceuticals. Cosmetics, 4, 40. https://doi.org/10.3390/COSMETICS4040040
  29. 29 Yang, B et al. (2009). EFFECTS OF ORAL SUPPLEMENTATION AND TOPICAL APPLICATION OF SUPERCRITICAL CO2 EXTRACTED SEA BUCKTHORN OIL ON SKIN AGEING OF FEMALE SUBJECTS. Journal of applied cosmetology, 27, 13-25. https://www.semanticscholar.org/paper/f3cf4873722866e33f5cdb6b5de3eec6e0fd7244
  30. 30 He, N et al. (2023). A Comprehensive Review on Extraction, Structure, Detection, Bioactivity, and Metabolism of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Journal of Food Biochemistry. https://doi.org/10.1155/2023/4839124
  31. 31 Andersson, S et al. (2008). Tocopherols and tocotrienols in sea buckthorn (Hippophae rhamnoides L.) berries during ripening. Journal of agricultural and food chemistry, 56(15), 6701-6. https://doi.org/10.1021/jf800734v
  32. 32 Vinita et al. (2017). Potential health benefits of Sea buckthorn oil- A review. Agricultural Reviews, 38, 233-237. https://doi.org/10.18805/AG.V38I03.8984
  33. 33 Dudău, M et al. (2021). A Fatty Acid Fraction Purified From Sea Buckthorn Seed Oil Has Regenerative Properties on Normal Skin Cells. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.737571
  34. 34 A., R C et al. (2024). Millets: A Scientific Perspective on Their Nutritional and Health Relevance. Journal of Scientific Research and Reports. https://doi.org/10.9734/jsrr/2024/v30i51966
  35. 35 Gupta, M et al. (2023). Millets: A Nutritional Powerhouse With Anti-cancer Potential. Cureus, 15. https://doi.org/10.7759/cureus.47769
  36. 36 Kéophiphath, M et al. (2020). “Miliacin encapsulated by polar lipids stimulates cell proliferation in hair bulb and improves telogen effluvium in women”. Journal of Cosmetic Dermatology, 19, 485 - 493. https://doi.org/10.1111/jocd.12998
  37. 37 Boisnic, S et al. (2016). Miliacin Associated with Polar Lipids: Effect on Growth Factors Excretion and Extracellular Matrix of the Dermal Papilla Hair Follicle Model Maintained in Survival Conditions. https://doi.org/10.4172/2167-0951.1000143