
Bio-Leinöl-Mixtur mit bio-zertifiziertem Algenöl. Reich an DHA
Für Geist und Blick

Mit Omega Blue bietet BIO PLANÈTE eine einzigartige Leinöl-Mixtur, die speziell für eine pflanzenbasierte Ernährung entwickelt wurde. Wer keinen Fisch mag , muss also nicht auf wertvolle Omega-3-Fettsäuren verzichten: Das bio-zertifizierte DHA aus der Mikroalge Schizochytrium sp. trägt bei einer täglichen Aufnahme von 250 mg zur Erhaltung einer normalen Gehirnfunktion und Sehkraft bei.
100 % Bio und ausschließlich aus natürlichen Zutaten hergestellt, kombiniert Omega Blue die wertvollen Eigenschaften von Leinöl, geröstetem Walnussöl und Weizenkeimöl. Dank der innovativen 3D-Filtration entfaltet das Leinöl seinen milden, nussig-herben Geschmack und ist ideal für die kalte Küche – ob in Salaten, Smoothies oder als Topping für Müsli.
Als Vorreiter im Speiseöl-Segment setzt BIO PLANÈTE mit Omega Blue neue Maßstäbe. Die enthaltene DHA-Quelle wird nachhaltig aus Mikroalgen gewonnen – ressourcenschonend gezüchtet in kontrollierten Wassertanks, ohne das marine Ökosystem zu belasten. Diese Innovation macht Omega Blue zur perfekten Wahl für alle, die Wert auf eine gesunde, pflanzenbasierte Ernährung legen.
BIO PLANÈTE Omega Blue Leinöl-Mixtur

8,99 €*
Omega Blue - Genuss mit Mehrwert
Beiträge im Weltverbessererblog
Quellenverzeichnis
- 1 Kris-Etherton, P et al. (2004). Polyunsaturated fatty acids and cardiovascular health. Nutrition reviews, 62(11), 414-26. https://doi.org/10.1111/J.1753-4887.2004.TB00013.X
- 2 Meydani, S (1996). Effect of (n-3) polyunsaturated fatty acids on cytokine production and their biologic function. Nutrition, 12(1 Suppl), S8-14. https://doi.org/10.1016/S0899-9007(96)80004-9
- 3 Fett, essenzielle Fettsäuren | DGE
- 4 Coniglio, S J et al. (2023). Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology, 12. https://doi.org/10.3390/biology12020279
- 5 Coletta, J et al. (2010). Omega-3 Fatty acids and pregnancy. Reviews in obstetrics & gynecology, 3(4), 163-71. https://pubmed.ncbi.nlm.nih.gov/21364848
- 6 Hashimoto, M (2014). [Omega-3 fatty acids and cognition]. Nihon rinsho. Japanese journal of clinical medicine, 72(4), 648-56. https://pubmed.ncbi.nlm.nih.gov/24796092
- 7 Duan, H et al. (2023). Polyunsaturated Fatty Acids (PUFAs): Sources, Digestion, Absorption, Application and Their Potential Adjunctive Effects on Visual Fatigue. Nutrients, 15. https://doi.org/10.3390/nu15112633
- 8 Kazemi, F et al. (2021). The Effect of Evening Primrose Oil Capsule on Hot Flashes and Night Sweats in Postmenopausal Women: A Single-Blind Randomized Controlled Trial. Journal of Menopausal Medicine, 27, 8 - 14. https://doi.org/10.6118/jmm.20033
- 9 Farzaneh, F et al. (2013). The effect of oral evening primrose oil on menopausal hot flashes: a randomized clinical trial. Archives of Gynecology and Obstetrics, 288, 1075-1079. https://doi.org/10.1007/s00404-013-2852-6
- 10 Fathizadeh, N et al. (2008). Effects of evening primrose oil and vitamin E on the severity of periodical breast pain. iranian journal of nursing and midwifery research, 13, 90-93. https://www.semanticscholar.org/paper/2e387d9796539d33c194ddaa21cecb5a9fb8cf62
- 11 Sharif, S, Darsareh, F (2019). Impact of evening primrose oil consumption on psychological symptoms of postmenopausal women: a randomized double-blinded placebo-controlled clinical trial. Menopause. https://doi.org/10.1097/GME.0000000000001434
- 12 Safdari, F et al. (2021). Effect of Evening Primrose Oil on Postmenopausal Psychological Symptoms: A Triple-Blind Randomized Clinical Trial. Journal of Menopausal Medicine, 27, 58 - 65. https://doi.org/10.6118/jmm.21010
- 13 Boccardo, A et al. (2022). Effects of a supplemental calcareous marine algae bolus on blood calcium concentration in dairy heifers. https://www.semanticscholar.org/paper/99d3bea01671540c65062dc448b09f62ab83032d
- 14 Desideri, D et al. (2016). Essential and toxic elements in seaweeds for human consumption. Journal of Toxicology and Environmental Health, Part A, 79, 112 - 122. https://doi.org/10.1080/15287394.2015.1113598
- 15 Zhu, Y et al. (2014). Solubilisation of calcium and magnesium from the marine red algae Lithothamnion calcareum. International Journal of Food Science and Technology, 49, 1600-1606. https://doi.org/10.1111/IJFS.12459
- 16 Silva, R P d et al. (2021). Characterisation and Traceability of Calcium Carbonate from the Seaweed Lithothamnium calcareum. Solids, 2, 192-211. https://doi.org/10.3390/SOLIDS2020013
- 17 Moura, A, Adicionais, P C (2008). UTILIZAÇÃO DA FARINHA DE ALGAS CALCÁREAS NA ALIMENTAÇÃO ANIMAL USE OF SEAWED FLOUR IN THE ANIMAL FEEDING. https://doi.org/10.21071/az.v58i224.5076
- 18 Pérez, J A M et al. (2011). Assessing osteoporosis risk factors in Spanish menopausal women. Gynecological Endocrinology, 27, 807 - 813. https://doi.org/10.3109/09513590.2010.540599
- 19 Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause, 28, 973 - 997. https://doi.org/10.1097/GME.0000000000001831
- 20 Patil, V S et al. (2022). To Study the Osteoporosis in Pre and Post Menopausal Women. International Journal of Medical and Biomedical Studies. https://doi.org/10.32553/ijmbs.v6i3.2447
- 21 Hejazi, J et al. (2020). Nutrition and osteoporosis prevention and treatment. Biomedical Research and Therapy, 7, 3709-3720. https://doi.org/10.15419/bmrat.v7i4.598
- 22 Flynn, A (2003). The role of dietary calcium in bone health. Proceedings of the Nutrition Society, 62, 851 - 858. https://doi.org/10.1079/PNS2003301
- 23 Pikor, D et al. (2024). Calcium Ions in the Physiology and Pathology of the Central Nervous System. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms252313133
- 24 Hidalgo, C, Donoso, P (2008). Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxidants & redox signaling, 10(7), 1275-312. https://doi.org/10.1089/ars.2007.1886
- 25 Kuo, I Y, Ehrlich, B (2015). Signaling in muscle contraction. Cold Spring Harbor perspectives in biology, 7(2), a006023. https://doi.org/10.1101/cshperspect.a006023
- 26 Parasa, M et al. (2014). Cramps and tingling: A diagnostic conundrum. Anesthesia, Essays and Researches, 8, 247 - 249. https://doi.org/10.4103/0259-1162.134524
- 27 Gutzeit, D et al. (2008). Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: a kinetic study on storage stability and the determination of processing effects. Journal of food science, 73(9), C615-20. https://doi.org/10.1111/j.1750-3841.2008.00957.x
- 28 Koskovac, M et al. (2017). Sea Buckthorn Oil—A Valuable Source for Cosmeceuticals. Cosmetics, 4, 40. https://doi.org/10.3390/COSMETICS4040040
- 29 Yang, B et al. (2009). EFFECTS OF ORAL SUPPLEMENTATION AND TOPICAL APPLICATION OF SUPERCRITICAL CO2 EXTRACTED SEA BUCKTHORN OIL ON SKIN AGEING OF FEMALE SUBJECTS. Journal of applied cosmetology, 27, 13-25. https://www.semanticscholar.org/paper/f3cf4873722866e33f5cdb6b5de3eec6e0fd7244
- 30 He, N et al. (2023). A Comprehensive Review on Extraction, Structure, Detection, Bioactivity, and Metabolism of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.) Journal of Food Biochemistry. https://doi.org/10.1155/2023/4839124
- 31 Andersson, S et al. (2008). Tocopherols and tocotrienols in sea buckthorn (Hippophae rhamnoides L.) berries during ripening. Journal of agricultural and food chemistry, 56(15), 6701-6. https://doi.org/10.1021/jf800734v
- 32 Vinita et al. (2017). Potential health benefits of Sea buckthorn oil- A review. Agricultural Reviews, 38, 233-237. https://doi.org/10.18805/AG.V38I03.8984
- 33 Dudău, M et al. (2021). A Fatty Acid Fraction Purified From Sea Buckthorn Seed Oil Has Regenerative Properties on Normal Skin Cells. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.737571
- 34 A., R C et al. (2024). Millets: A Scientific Perspective on Their Nutritional and Health Relevance. Journal of Scientific Research and Reports. https://doi.org/10.9734/jsrr/2024/v30i51966
- 35 Gupta, M et al. (2023). Millets: A Nutritional Powerhouse With Anti-cancer Potential. Cureus, 15. https://doi.org/10.7759/cureus.47769
- 36 Kéophiphath, M et al. (2020). “Miliacin encapsulated by polar lipids stimulates cell proliferation in hair bulb and improves telogen effluvium in women”. Journal of Cosmetic Dermatology, 19, 485 - 493. https://doi.org/10.1111/jocd.12998
- 37 Boisnic, S et al. (2016). Miliacin Associated with Polar Lipids: Effect on Growth Factors Excretion and Extracellular Matrix of the Dermal Papilla Hair Follicle Model Maintained in Survival Conditions. https://doi.org/10.4172/2167-0951.1000143